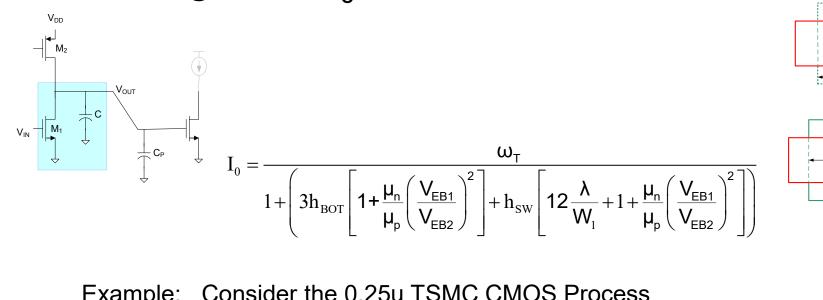

EE 508 Lecture 39

High Frequency Filters Noise and Dynamic Range

Single-ended High-Frequency TA Integrators

Speed of operation increases with V_{EB}

 V_{EB} is limited by signal swing requirements and V_{DD}


Signal Swing:

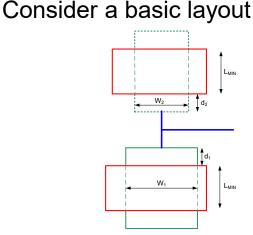
$$V_{DD} - V_{T} - V_{EB} = V_{T} + V_{EB} - (V_{T} + 100 \text{mV})$$
$$V_{EB} = \frac{V_{DD} + 100 \text{mV} - V_{T}}{2}$$
$$I_{OMAX} \cong \frac{\mu (V_{DD} + 100 \text{mV} - V_{T})}{2L_{min}^{2}}$$

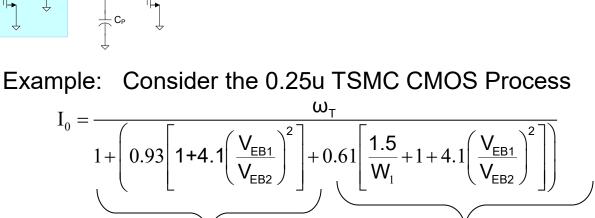
Review from last lecture How high can I_{\cap} be?

Consider a basic layout

 W_2

• Maximizing W_1 will minimize I_0 but power will get very large for marginal improvement in

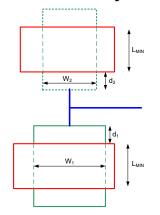

Review from last lecture How high can I_0 be?


 M_2

 V_{DD}

Example: Consider the 0.25u TSMC CMOS Process

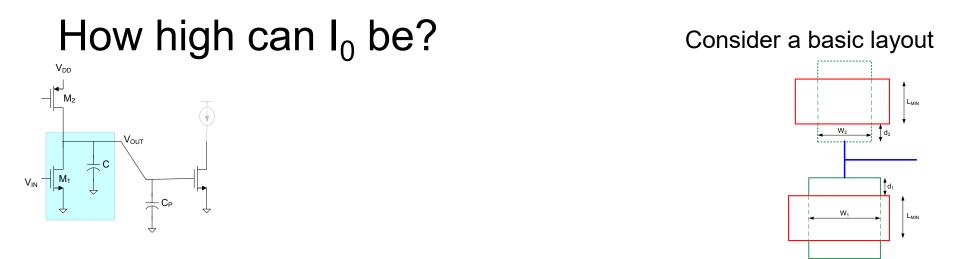
- $I_{0} = \frac{1}{1 + \left(0.93 \left[1 + 4.1 \left(\frac{V_{\text{EB1}}}{V_{\text{EB2}}}\right)^{2}\right] + 0.61 \left[\frac{1.5}{W_{1}} + 1 + 4.1 \left(\frac{V_{\text{EB1}}}{V_{\text{EB2}}}\right)^{2}\right]\right)$ GATE SW term **BOT** term term If W₁=1.5u and V_{EB1}=V_{EB2} $I_0 = \frac{\omega_T}{1 + (4.73 + 4.03)} = .102\omega_T$
- Designer has control of V_{EB1} and V_{EB2}
- The diffusion capacitance term can dominate the C_{GS} term
- The SW capacitance can be the biggest contributor to the speed limitations
- A factor of 10 or even much more reduction in speed is possible due to the diffusion parasitics and layout
- speed



 V_{DD}

- M2

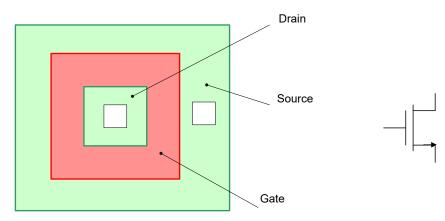
Consider a basic layout

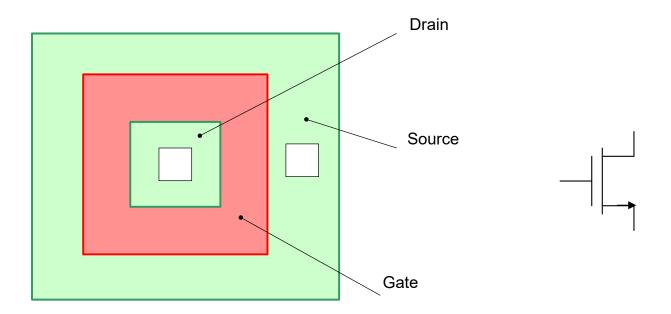

BOT term

This example shows that layout is really critical when high speed operation is needed

SW term

Designer can also manage design with V_{EB1}/V_{EB2} ratio

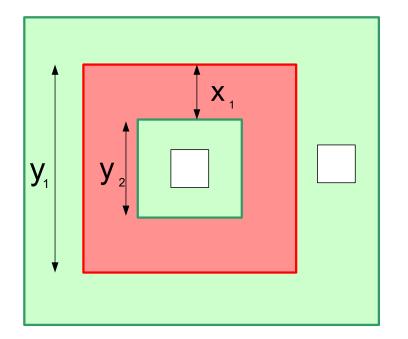

What can be done with layout to improve performance?


What can be done with layout to improve performance?

Reducing the diffusion capacitances on the drains will have a major impact on speed!

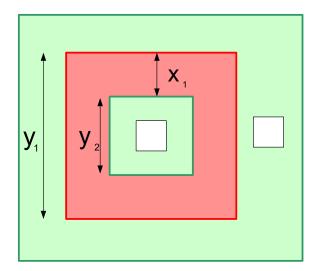
Consider a concentric layout approach:

Concentric Layouts


Can be shown this is equivalent to a rectangular transistor (W_{EQ}/L_{EQ})

Drain area and perimeter dramatically reduced

Source area and perimeter dramatically increased (but does not degrade performance)


Only drain sidewall is adjacent to the gate and C_{SW} is usually considerably lower here though some models do not provide separate characterization

Concentric Layouts

$$W_{EQ} \cong 4\left(\frac{y_{1}+y_{2}}{2}\right) \quad \text{or} \quad W_{EQ} \cong 4\left(y_{2}+\sqrt{2}\left[\frac{y_{1}-y_{2}}{4}\right]\right)$$
$$L_{EQ} \cong X_{1}$$

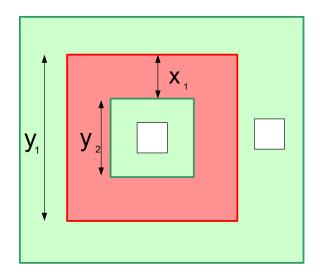
Exact closed-form expressions exist which are somewhat more complicated

Consider concentric layouts for M₁ and M₂

Recall
$$\frac{W_2}{W_1} = \frac{\mu_n}{\mu_p} \left(\frac{V_{EB1}}{V_{EB2}}\right)^2$$

Assume $W_2 > W_1$

Will minimize the diffusion capacitance by starting with a minimumsized concentric device


Thus
$$y_2=6\lambda$$
 $X_1=2\lambda$ $y_1=10\lambda$ $W_{min} \cong 4\lambda \left(6+\sqrt{2}\right)$

Define K_1 to be the scaling factor of W_1 above that of the minimum-sized concentric device W

$$\mathsf{K}_{1} = \frac{\mathsf{VV}_{1}}{\mathsf{W}_{1\min}}$$

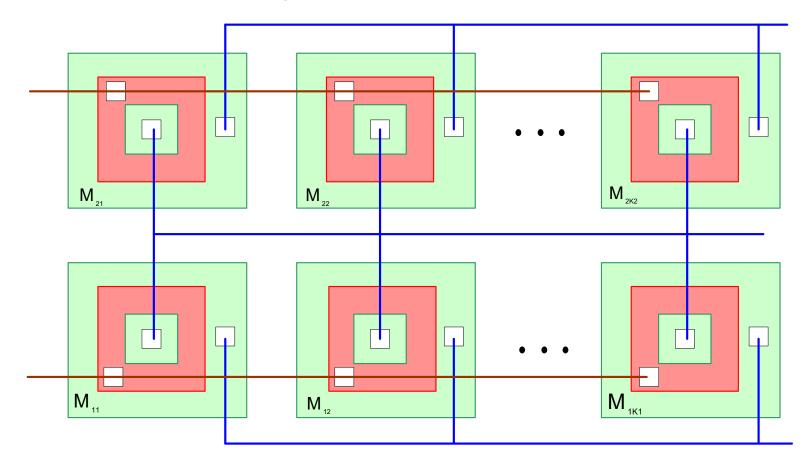
Assume, for convenience, that K is an integer

 M_1 realized by placing K_1 minimum-sized concentric devices in parallel

$$y_{2}=6\lambda \qquad x_{1}=2\lambda \qquad y_{1}=10\lambda$$
$$W_{1\min} \cong 4\lambda \left(6+\sqrt{2}\right)$$
$$K_{1} = \frac{W_{1}}{W_{1\min}}$$

Consider now the concentric layout for M₁

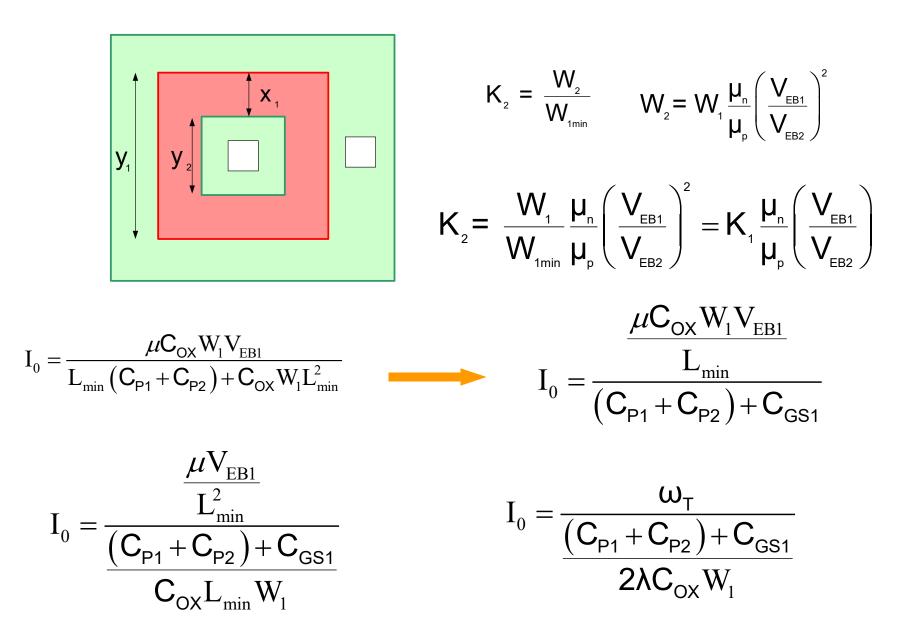
 $P_{D1} = K_1 24\lambda$ $A_{D1} = K_1 (6\lambda)^2$ $A_{GATE1} = K_1 (48\lambda^2 + 16\lambda^2)$

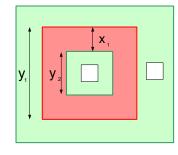

Consider now the concentric layout for M₂

The minimum-sized layout (gate, source, and drain) for the p-channel transistors are identical to those for n-channel transistors

Define K_2 to be the scaling factor for W_2 above that of a minimum-sized concentric device

$$P_{D2} = K_2 24\lambda$$
 $A_{D2} = K_2 (6\lambda)^2$


Consider concentric layouts for M₁ and M₂

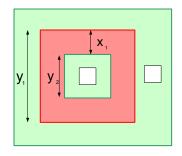

Individual segments can be a little bigger than minimum sized w/o major change in performance

May select K₁=K₂=1

Consider concentric layouts for M₁ and M₂

Consider concentric layouts for M₁ and M₂

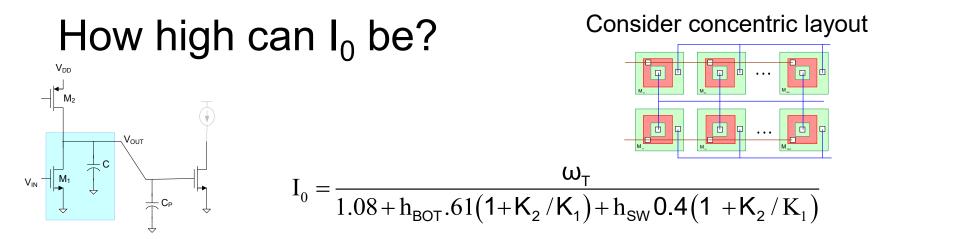
$$I_{0} = \frac{\omega_{T}}{\frac{\left(C_{P1} + C_{P2}\right) + C_{GS1}}{2\lambda C_{OX}W_{1}}}$$

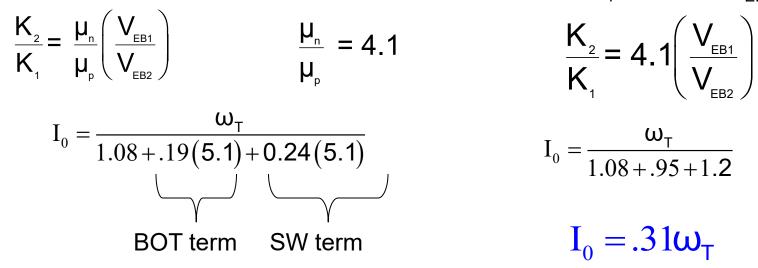

 $P_{D1} = K_1 24\lambda$ $A_{D1} = K_1 (6\lambda)^2$ $A_{GATE1} = K_1 (48\lambda^2 + 16\lambda^2)$

 $\mathsf{P}_{\mathsf{D2}} = \mathsf{K}_2 24\lambda \qquad \mathsf{A}_{\mathsf{D2}} = \mathsf{K}_2 (6\lambda)^2 \qquad \mathsf{W}_{_1} \cong 4\mathsf{K}_{_1}\lambda \left(6 + \sqrt{2}\right)$

$$I_{0} = \frac{\omega_{T}}{\frac{C_{OX}K_{1}(48\lambda^{2}+16\lambda^{2})+(C_{SWn}K_{1}24\lambda+C_{BOTn}K_{1}(6\lambda)^{2}+C_{SWp}K_{2}24\lambda+C_{BOTp}K_{2}(6\lambda)^{2})}{2\lambda C_{OX}4K_{1}\lambda(6+\sqrt{2})}}$$

$$I_{0} = \frac{\omega_{T}}{\frac{C_{OX}K_{1}(48\lambda^{2}+16\lambda^{2})+C_{BOT}(6\lambda)^{2}(K_{1}+K_{2})+C_{SW}24\lambda(K_{1}+K_{2})}{2\lambda C_{OX}4K_{1}\lambda(6+\sqrt{2})}}$$

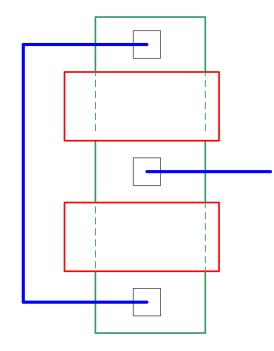

Consider concentric layouts for M_1 and M_2


$$I_{0} = \frac{\omega_{T}}{\frac{C_{OX}K_{1}\left(48\lambda^{2}+16\lambda^{2}\right)+C_{BOT}\left(6\lambda\right)^{2}\left(K_{1}+K_{2}\right)+C_{SW}24\lambda\left(K_{1}+K_{2}\right)}{2\lambda C_{OX}4K_{1}\lambda\left(6+\sqrt{2}\right)}}$$

$$I_{0} = \frac{\omega_{T}}{\frac{(8) + h_{BOT} 4.5(1 + K_{2}/K_{1}) + h_{SW} 3(1 + K_{2}/K_{1})}{(6 + \sqrt{2})}}$$

$$I_{0} = \frac{\omega_{T}}{1.08 + h_{BOT}.61(1 + K_{2}/K_{1}) + h_{SW}0.4(1 + K_{2}/K_{1})}$$

Example: Consider the 0.25u TSMC CMOS Process with W_1 =1.5u and $V_{EB1}=V_{EB2}$

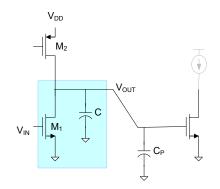

Diffusion parasitics still dominate frequency degradation

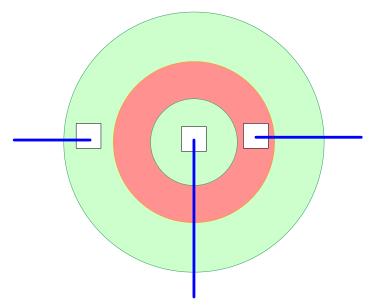
SW term probably over-estimated since it is an internal SW capacitance

But a factor of 3 faster with the concentric layout compared to standard layout

Other layouts for enhancing speed of operation

Goal: reduce area and perimeter on drain

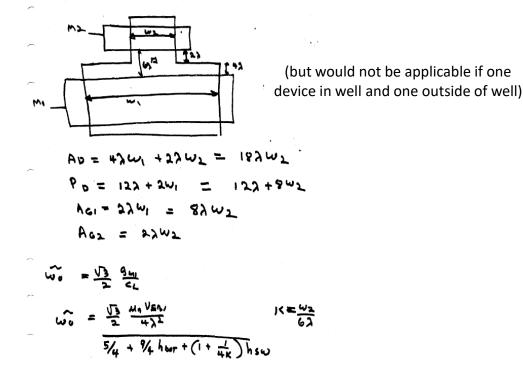



Shared-drain structure

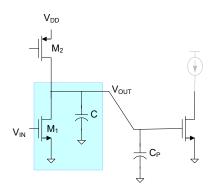
(but would not be applicable if one device in well and one outside of well)

Circular-concentric structure

Though the reduced size drain structures work very well, CAD support may be limited for layout, simulation, and extraction



Other layouts for enhancing speed of operation


Goal: reduce area and perimeter on drain

n-chand lord, simple Lagout

 $W_1 = 4W_2$

Useful for adding loss or in high-speed gain stages (can add loss with n-channel or p-channel device)

Parameters from .25u TSMC Process

u	3.74E+10	1/(V*sec)
---	----------	-----------

2*lambda	0.25	U	
hsw	0.61	none	
ot	0.32	none	
ı∕up	4.1		

Integrator lo for Special Layouts

file: integrator-speed-comp

Note: Process parameters may be a little optimistic but relative performance should be as predicted

Conventional Layout

nuonai La	you	•													
VEB1/ VEB2	ĸ	W1	W2	SWn	S₩p	BOTn	вотр	SW comp Total	Bot comp Total	Load comp	Den	VEB1	lo,no d GHz	f lo GHz	
1	1	0.75	3.075	0.92	3.42	0.96	3.94	4.33	4.90	1	10.2	1	95.3	9.3	
1	2	1.5	6.15	0.61	3.11	0.96	3.94	3.72	4.90	1	9.6	i	95.3	9.9	
1	4	3	12.3	0.46	2.96	0.96	3.94	3.42	4.90	1	9.3	1	95.3	10.2	
1	8	6	24.6	0.38	2.88	0.96	3.94	3.26	4.90	t	9.2	1			
1	16	12	49.2	0.34	2.80	0.96	3.94		4.90				95.3	10.4	
								3.19		1	9.1	1	95.3	10.5	
0.5	1	0.75	0.769		1.54	0.96	0.98	2.46	1.94	1	5.4	1	95.3	17.6	
0.5	2	1.5	1.538		1.24	0.96	0.98	1.85	1.94	1	4.8	1	95.3	19.9	
0.5	4	3	3.075		1.08	0.96	0.98	1.54	1.94	1	4.5	1	95.3	21.2	
0.5	8	6	6.15	0.38	1.01	0.96	0.98	1.39	1.94	1	4.3	1	95.3	22.0	
0.5	16	12	12.3	0.34	0.97	0.96	0.98	1.31	1.94	1	4.3	1	95.3	22.4	
2	1	0.75	12.3	0.92	10.92	0.96	15.74	11.83	16.70	1	29.5	1	95.3	3.2	
2	2	1.5	24.6	0.61	10.61	0.96	15.74	11.22	16.70	1	28.9	1	95.3	3.3	
2	4	3	49.2	0.46	10.46	0.96	15.74	10.92	16.70	1	28.6	1	95.3	3.3	
2	8	6	98.4	0.38	10.39	0.96	15.74	10.77	16.70	1	28.5	1	95.3	3.3	
2	16	12	196.8	0.34	10.35	0.96	15.74	10.69	16.70	1	28.4	1	95.3	3.4	
1	1	0.75	3.075		3.42	0.96	3.94	4.33	4.90	1	10.2	1.5	142.9	14.0	
1	2	1.5	6.15	0.61	3.11	0.96	3.94	3.72	4.90	1	9.6	1.5	142.9	14.9	
1	4	3	12.3	0.46	2.96	0.96	3.94	3.42	4.90	1	9.3	1.5	142.9	15.3	
1	8	6	24.6	0.38	2.88	0.96	3.94	3.26	4.90	1	9.2	1.5	142.9	15.6	
1	16	12	49.2	0.34	2.84	0.96	3.94	3.19	4.90	1	9.1	1.5	142.9	15.7	
0.5	1	0.75	0.769		1.54	0.96	0.98	2.46	1.94	1	5.4	1.5	142.9	26.5	
0.5	2	1.5	1.538		1.24	0.96	0.98	1.85	1.94	1	4.8	1.5	142.9	29.8	
0.5	4	3	3.075		1.08	0.96	0.98	1.54	1.94	1	4.5	1.5	142.9	31.9	
0.5	8	6	6.15	0.38	1.01	0.96	0.98	1.39	1.94	1	4.3	1.5	142.9	33.0	
0.5	16	12	12.3	0.34	0.97	0.96	0.98	1.31 11.83	1.94 16.70	1	4.3	1.5	142.9	33.6	
2	1	0.75	12.3	0.92	10.92		15.74			-	29.5	1.5	142.9	4.8	
2	2	1.5	24.6	0.61	10.61	0.96	15.74	11.22	16.70	1	28.9	1.5	142.9	4.9	
2	4	3	49.2	0.46	10.46	0.96	15.74	10.92	16.70	1	28.6	1.5	142.9	5.0	
2	8	6	98.4	0.38	10.39	0.96	15.74	10.77 10.69	16.70 16.70	1	28.5	1.5 1.5	142.9	5.0	
2	16	12	196.8	0.34	10,35	0.96	15.74	10.69	10.70	1	28.4	1.5	142.9	5.0	
1	1	0.75	3.075	0.92	3.42	0.96	3.94	4.33	4.90	1	10.2	2	190.6	18.6	
1	2	1.5	6.15	0.61	3.11	0.96	3.94	3.72	4.90	1	9.6	2	190.6	19.8	
1	4	3	12.3	0.46	2.96	0.96	3.94	3.42	4.90	1	9.3	2	190.6	20.5	
1	8	6	24.6	0.38	2.88	0.96	3.94	3.26	4,90	1	9.2	2	190.6	20.8	
1	16	12	49.2	0.34	2.84	0.96	3.94	3.19	4.90	1	9.1	2	190.6	21.0	
0.5	1	0.75	0.769	0.92	1.54	0.96	0.98	2.48	1.94	1	5.4	2	190.6	35.3	
0.5	2	1.5	1.538		1.24	0.96	0.98	1.85	1.94	1	4.8	2	190.6	39.0	k
0.5	4	3	3.075		1.08	0.96	0.98	1.54	1.94	1	4.5	2	190 6	42.5	
0.5	8	6	6.15	0.38	1.01	0.96	0.98	1.39	1.94	1	4.3	2	191.6	44.0	
0.5	16	12	12.3	0.34	0.97	0.95	0.98	1.31	1.94	1	4.3	2	19.6	44.8	
2	1	0.75	12.3	0.92	10.92	0.96	15.74	11.83	16.70	1	29.5	2	190.0	6.5	
2	2	1.5	24.6	0.61	10.61	0.96	15.74	11.22	16.70	1	28.9	2	190.6	0.0	ſ
2	4	3	49.2	0.46	10.46	0.96	15.74	10.92	16.70	1	28.6	2	190.6	6.7	
2	8	6	98.4	0.38	10.39	0.96	15.74	10.77	16.70	1	28.5	2	190.6	6.7	
2	16	12	196.8	0.34	10.35	0.96	15.74	10.69	16.70	1	28.4	2	190.6	6.7	

Note: Significant change in speed with optimal choice of design variables

2*lambda		25 U			1-1-1		- 1 - f	- 0	1								
hsw:		51 nor 32 nor						or Spec	ial Lay	outs							
hbot μη/υρ		s⊭ nor ∴1	16		tjar, anda	őunton-ébei	ad-exemp										
								rs may be is predicted		nistic but re	fative						
->oncen	VEB1/ VEB2	ut K	K2	K2^	WI	W2	SWn	SWp	BOTh	вотр	SW comp Total	Bot comp Total	Load Comp	Den	VEBt	lo,no dii GHz	F
	1	+	4.5		3.7	15.2	0.25	1,19	0,19	4,53	1.44	4.73	1.08	7.24	1	88.3	
	1	2	8.9		6.7	27,5	0.27	1.22	0,43	8,56	1.49	8.99	1.04	11.53	1	91.3	
	1	4	17.1		12.7	52.1	0.29	1,23	0.91	16,63	1.52	17.53	1.02	20.08	1	93.1	
	t t	2	4.8 8.9		3.7 6.7	15,2 27,5	0.25	1.19	0.19	4,53 8,56	1.44	4.73	1.08 1.04	7.24	1.5	132.5 138.9	
	i	4	17.1		12.7	52.1	0.29	1.23	0.91	18.63	1.52	17.53	1.02	20.08	1.5	139.7	
	1	1	4.8		3.7	15.2	0.25	1.19	0.19	4.53	1.44	4.73	1.08	7.24	2	176.6	
	1	2	8.9		6.7	27.5	0.27	1,22	0.43	8,56	1,49	6,99	1.04	11.53	2	182.6	
	1	4	17.1		12.7	52.1	0.29	1.23	0.91	16.63	1.52	17.53	1.02	20.08	2	186.3	
	0.5	1	1.0		3.7	3.8	0.25	0.25	0.19	0,21	0.50	0.40	1.08	1.98	1	88.3	
	0.6	2	2.1		6.7	6.9	0.27	0.28	0.43	0.45	0.55	0.88	1.04	2.48	1	91.3	
	0.5	4	4.1		12.7	13.0 3.8	0.29 0.25	0.30	0.91	0.96	0.58	1.86 0.40	1.02 1.08	3.47	1 1.5	93.1 132.5	
	0.6	2	2.1		8.7	8.9	0.20	0.25	0.18	0.45	0.55	0.88	1.08	2.48	1.5	132.5	
	0.6	4	4.1		12.7	13.0	0.29	0.30	0.91	0.96	0.58	1.86	1.02	3.47	1.5	139.1	-
	0.5	1	1.0		3.7	3.8	0.25	0.25	0.19	0.21	0.50	0.40	1.08	1.98	2	176.6	
	0.5 0.5	2	2.1		6.7 12.7	5.9 13.0	0.27	0.28	0.43	0.45	0.55	0.88	1.04	2.48 3.47	2 2	182.6 180.3	
	61.62				1.4.1	10.0	0.20	0.00	0.01	6,86	0.50	1.00	1.562	3.47	2	100.3	
	2	t	20.0		3.7	60.8	0.25	4.94	0,19	77.92	5,19	78.11	1.08	84.38	1	88.3	1
	2	2	36.4 69.2		6.7 12,7	110.0	0.27	4.97 4.99	0.43	142.47 271.58	5.24 5.27	142.60 272.47	1.04	145.18 278,77	1	91.3 91.1	
	2	1	20.0		3.7	60.8	0.25	4.94	0.19	77.92	5.19	78.11	1.02	84.38	1.5	13 7.5	
	2	2	38.4		6.7	110.0	0.27	4.97	0.43	142.47	5.24	142.90	1.04	149.18	1.5	136.9	
	2	4	69.2		12.7	208.4	0.29	4.99	0.91	271.56	5.27	272.47	1.02	278.77	1.5	139.7	1
	2	1	20.0		3,7	60.8	0.25	4,94	0.19	77,92	5.19	78.11	1.08	84,38	2	176.6	
	2	2	35.4 69.2		6.7 12.7	110.0 208.4	0.27 0.29	4.97 4.99	0.43	142.47 271.66	5.24 5.27	142.90 272.47	1.04	149.18 278.77	2	182.6 186.3	
Segmen	ted Cond	cent	ric La	ayout													
	1	+	4.8	2.3	3.71	16.2 27.5	0.25	1.13	0.19	2.05	1.38	2.24	1.08	4.70	1	88.3	
	1	2	8.9 17.1	4,35 8,45	6,71 12,71	27.5 52.1	0.27	1.19	0.91	4.06	1.46 1.50	4.49	1.04	6,99 11,52	1	91.3 93.1	
	÷	1	4.8	2.3	3,71	15.2	0.25	1.13	0.19	2.05	1.38	2.24	1.08	4.70	1.5	132.5	
	1	2	8.8	4.35	6.71	27.5	0.27	1.19	0.43	4.06	1.46	4.49	1.04	6.99	1.5	136.9	
	1	- 4	17.1	8.45	12.71	52.1	0.29	1.22	0.91	8,09	1.50	8,99	1.02	11.52	1,5	139.7	
	1	2	4.8 8.9	2.3 4,35	3.71	15.2 27.5	0.25	1.13 1.19	0.19	2.05	1.38	2.24	1.08 1.04	4.70	2	178.8 182.6	
	4	4	17.1	8.45	12.71		0.29	1.22	0.91	8.00	1.50	8.99	1.02	11.52	2	188.3	
	0.5	1	1.0	0.4	3.71	3.8	0.25	0.20	0.19	0.06	0.44	0.26	1.08	1.78	1	88.3	
	0,5	ź	2.1	0.91	8.71	5.9	0.27	0.25	0.43	0.18	0.52	0.61	1.04	2.17	- 1	91.3	
	0.5	4	4.1	1.94	12.71		0.29	D.28	0.91	0.42	0.57	1.33	1.02	2.92	1	93.1	
	0.5	1	1.0	0.4	3.71	3.8	0.25	0.20	0.19	0.08	0.44	0.26	1.08	1.78	1.5	132.5	
	0.6	2	2.1	0.91	6.71	6.9	0.27 0.29	0.25	0.43 8.97	0,18	0.52	0.61	1.04	2.17	1.5 1.5	136.9 139.7	
	0.5	4	4.1	1.94	12.71	13.0 3.8	0.29	0.26	0.19	0.42	0.57	1.3-3	1.02	2.92	1.5	139.0	
	0.5	2	2.1	0,91	6.71	6.9	0.27	0.25	0.43	0,18	0.62	0.61	1.04	2.17	2	182.6	
	0.5	4	4.1	1.94	12.71		0.29	0.28	0.91	0.42	0.67	1.33	1.02	2.92	2	196.3	
	2	Ŧ	20.0	9.9	3.71	60.8	0.25	4.89	0.19	38.05	5.13	38.24	1.08	44.45	1	88.3	•
	ź	2	38.4	18.1	6.71	110.0	0.27	4.94	0.43	70.31	5.21	70.74	1.04	77.00	i	91,3	
	2	4	69.2	34.5	12.71	208.4	0.29	4.97	0.91	134.86	5.26	135.77	1.02	142.04	1	93.1	
	2	1	20.0	9.9	3,71	8.08	0.25	4.89	0.19	38.05	5.13	38.24	1.08	44.45	1.5	132.5	
	2 2	24	38.4 69.2		6.71 12.71	110.0	0.27	4.94 4.97	0.43	70.31 134.85	5.21 5.28	70.74 135.77	1.04	77.00	1.5 1.5	136.9 139.7	
	2	1	20.0	9.9	3.71	60.8	0.25	4.89	0.19	38.05	5.13	38,24	1.08	44.45	2	178.6	
	2	2	36.4		6.71	110.0	0.27	4.94	0.43	70.31	5.21	70.74	1.04	77.00	2	162.6	
	2	4		34.5	40.714	208.4	0.29	4,97	0.91	134.86	5.26	\$35.77	1.02	142.04	2	166.3	

Parameters from 0.25u TSMC process

Lossy Integrator


U	3.74E+10	1/(V*sec)	Lossy Integrator
2*lambda	0.25	ប	
hsw	0.61	none	Note: Process parameters may be a little optimistic but relative performance
hbot	0.32	0096	should be as predicted.
'up	4,1		Pile:lossy-integrator-speed-comp

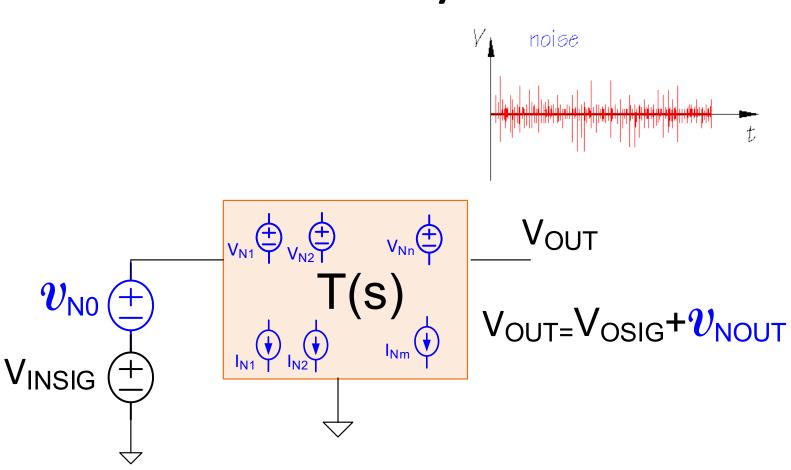
P-channel Load, Conventional Layout 1 0.75 0.73 1.24 1.25 0.96 0.98 2.49 1.94 2.03 6.45 1 40.8 2 1.50 1.46 0.92 0.94 0.96 0.96 1.94 2.03 5.83 1 40.8 4 3.00 2.93 0.77 0.78 0.96 0.96 1.94 2.03 5.83 1 40.8 4 3.00 2.93 0.77 0.78 0.96 0.96 1.94 2.03 5.52 1 40.8 1 0.75 0.73 1.24 1.25 0.96 0.98 2.49 1.94 2.03 6.45 1.5 61.1 2 1.50 1.46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.83 1.5 61.1 2 1.50 1.46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.	lo GHz
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4 3.00 2.93 0.77 0.78 0.96 0.98 1.55 1.94 2.03 5.52 1 40.8 1 0.75 0.73 1.24 1.25 0.96 0.98 2.49 1.94 2.03 6.45 1.5 61.1 2 1.50 1.46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.83 1.5 61.1 4 3.00 2.93 0.77 0.78 0.96 0.98 1.55 1.94 2.03 5.52 1.5 61.1 4 3.00 2.93 0.77 0.78 0.96 0.98 1.55 1.94 2.03 5.52 1.5 61.1 1 0.75 0.73 1.24 1.25 0.96 0.98 1.94 2.03 6.45 2 81.5 2 1.50 1.46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.83 2 81.5	12.8
1 0.75 0.73 1.24 1.25 0.96 0.98 2.49 1.94 2.03 6.45 1.5 61.1 2 1.50 1.46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.83 1.5 61.1 4 3.00 2.93 0.77 0.78 0.96 0.98 1.55 1.94 2.03 5.52 1.5 61.1 1 0.75 0.73 1.24 1.25 0.96 0.98 1.49 2.03 6.45 2 81.5 2 1.50 1.24 1.25 0.96 0.98 2.49 1.94 2.03 6.45 2 81.5 2 1.50 1.46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.83 2 81.5	14.2
2 1.50 1.46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.83 1.5 61.1 4 3.00 2.93 0.77 0.78 0.96 0.98 1.55 1.94 2.03 5.52 1.5 61.1 1 0.75 0.73 1.24 1.25 0.96 0.96 2.49 1.94 2.03 6.45 2 81.5 2 1.50 1.46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.83 2 81.5	15.0
4 3.00 2.93 0.77 0.78 0.96 0.98 1.55 1.94 2.03 5.52 1.5 61.1 1 0.75 0.73 1.24 1.25 0.96 0.96 2.49 1.94 2.03 6.45 2 81.5 2 1.50 1.46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.83 2 81.5	19.2
1 0.75 0.73 1.24 1.25 0.96 0.98 2.49 1.94 2.03 6.45 2 81.5 2 1.50 1.46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.83 2 81.5	21.2
2 1.50 1.46 0.92 0.94 0.96 0.98 1.86 1.94 2.03 5.83 2 81.5	22.4
	25.6
. 4 3.00 2.93 0.77 0.78 0.98 0.98 1.55 1.94 2.03 5.52 2 81.5	28.3
	29.9
P-channel Load, Concentric Layout	
1 3.80 3.71 0.25 0.254 0.194 0.206 0.50 0.40 2.18 3.06 1 37.8	26.7
2 6.87 6.71 0.27 0.28 0.429 0.454 0.55 0.88 2.11 3.55 1 39.1	23.3
4 13.02 12.71 0.29 0.296 0.907 0.955 0.58 1.86 2.07 4.52 1 39.8	18.3
1 3.80 3.71 0.25 0.254 0.194 0.206 0.50 0.40 2.18 3.08 1.5 56.7	40.1
2 6,87 6.71 0.27 0.28 0.429 0.454 0.55 0.88 2.11 3.55 1.5 58.6	34.9
4 13.02 12.71 0.29 0.296 0.907 0.955 0.58 1.86 2.07 4.52 1.5 59.8	27.4
1 3.80 3.71 0.25 0.254 0.194 0.205 0.50 0.40 2.18 3.08 2 75.6	53.5
2 6.87 6.71 0.27 0.28 0.429 0.454 0.55 0.88 2.11 3.55 2 78.1	48.5
4 13.02 12.71 0.29 0.296 0.907 0.955 0.58 1.86 2.07 4.52 2 79.7	36.5
N-Channel Load, Simple Layout	
t 0.75 3.00 0.76 0.72 1.25 2.73 1 66.0	30.2
2 1.50 6.00 0.69 0.72 1.25 2.66 1 66.0	31.1
4 3.00 12.00 0.65 0.72 1.25 2.62 1 66.0	31.5
1 0.75 3.00 0.76 0.72 1.25 2.73 1.5 99.0	45.3
2 1.50 6.00 0.69 0.72 1.25 2.66 1.5 99.0	46.6
4 3.00 12.00 0.65 0.72 1.25 2.82 1.5 99.0	47.3
f 0.75 3.00 0.76 0.72 1.25 2.73 2 132.0	60.4
2 1.50 6.00 0.69 0.72 1.25 2.66 2 132.0	62.1
4 3.00 12.00 0.65 0.72 1.25 2.62 2 132.0	63.0
N-Channel Load, Concentric Layout	
1 3.71 14.83 0.31 0.24 1.35 1.90 1 61.2	43.4
2 6.71 26.83 0.34 0.54 1.30 2.18 1 63.3	37.8
4 12.71 50.83 0.36 1.13 1.28 2.77 1 64.5	29.8
1 3.71 14.83 0.31 0.24 1.35 1.90 1.5 91.8	65.1
2 6,71 26.83 0.34 0.54 1.30 2.18 1.5 94.9	56.7
4 12.71 50.83 0.36 1.13 1.28 2.77 1.5 96.8	44.7
1 3.71 14.83 0.31 0.24 1.35 1.90 2 122.4	86.9
2 6.71 25.83 0.34 0.54 1.30 2.18 2 126.5	75.6
4 12.71 50.83 0.36 1.13 1.28 2.77 2 129.1	59.5

Noise and Dynamic Range

Noise is a random time-domain signal that characterizes movement of electrons in devices

Example: Noise in Resistors

Typical noise waveform for a resistor



Noise sources in electronic devices are time-domain sources and can be modeled with independent voltage and current sources

Noise sources have a polarity though the statistical characteristics are independent of how the polarity is assigned

Noise is often quantified by the corresponding RMS value of the noise voltage or current at a node or branch in a circuit

Noise in a System

- Often many noises sources present
- One can be corrupting the input and others are internal to the system
- Noises sources often sufficiently small that superposition can be applied to determine the combined effects of all noise sources on $v_{\rm NOUT}$

Characterization of a Noise Signal

Noise naturally characterized by its RMS value

$$\boldsymbol{v}_{RMS} = \lim_{T \to \infty} \int_{t_1}^{t_1 + T} \boldsymbol{v}^2(t) dt$$

Noise sources in electronic circuits

Resistors, Transistors, and Diodes all have one or more internal noise sources

Capacitors and Inductors are noiseless

The presence of noise sources in devices is the only reason that input signals in filters are not made arbitrarily small to reduce effects of nonlinearity to arbitrarily small levels

The concept of "Dynamic Range" is used to characterize how small of input signals can be practically used in filters

To achieve acceptable linearity in a filter, the designer should provide just enough "dynamic range" to satisfy the requirements of an application. Any extra dynamic range will invariably come at the expense of increased design efforts, cost, complexity, and power dissipation

Stay Safe and Stay Healthy !

End of Lecture 39